Influence of two different types of fertilizer on baby leaf lettuce (Lactuca sativa L.) in a hydroponic system

Authors

  • Ivan Tupajić Institute for Vegetable Crops, Smederevska Palanka, Serbia
  • Nenad Đurić Institute for Vegetable Crops, Smederevska Palanka, Serbia
  • Vladimir Miladinović Institute for Vegetable Crops, Smederevska Palanka, Serbia
  • Veselinka Zečević Institute for Vegetable Crops, Smederevska Palanka, Serbia
  • Radiša Đorđević Institute for Vegetable Crops, Smederevska Palanka, Serbia
  • Marija Bajagić University Bijeljina, Faculty of Agriculture, Bijeljina, Republic of Srpska, Bosnia and Herzegovina
  • Milan Ugrinović Institute for Vegetable Crops, Smederevska Palanka, Serbia

DOI:

https://doi.org/10.7251/ZARS2401074T

Keywords:

lettuce, fertilizer, treatments, hydroponic

Abstract

Lettuce (Lactuca sativa L.) is one of the most popular leafy vegetables used in human nutrition. Owing to its nutrient and mineral content, and high concentrations of vitamins and fibers, lettuce is considered as beneficial for human health. The short growing season makes lettuce convenient for growth in hydroponic systems. This paper aimed to study the effects of different mineral fertilizers on development and chlorophyll content in lettuce cultivated in controlled hydroponic systems. The research was carried out during January-February 2024 at the Institute for Vegetable Crops Smederevska Palanka, Serbia. The commercial lettuce cultivar ''Jukebox'' was cultivated for 30 days in a peat substrate, in a hydroponic system with artificial illumination. For lighting, light-emitting diodes (LEDs) were used. Plants were illuminated with multispectral white light (350-700 nm) at the temperature of 23 ± 2ºC and photoperiod of 8/16h (day/night). The experiment was set up in three replicates. The treatments were: Commercial fertilizer (CHF) intended for hydroponic production and soluble mineral fertilizer (SMF), applied in two different EC rates (1.5 and 2.5 mS/cm). For the first 15 days, the experiment was watered every day for 15 minutes, later watering was done twice a day for 15 minutes at intervals of ten hours. After 30 days of cultivation in a hydroponic system, growth parameters (fresh plant mass, above ground biomass and number of leaves) and chlorophyll content were measured. The CHF treatment significantly (p≤0.01) increased the mass of the plant (13.94g) comparing to SMF treatment (9.79g) The values of leaf chlorophyll content was significantly higher on the CHF treatment (26.43 SPAD) comparing to SMF treatment (22.18 SPAD) on the lower level of probability (p≤0.05). Nevertheless, the differences in mass and chlorophyll content indicate that the nutrients in CHF are better used compared to the SMF treatment especially at the 1.5 mS/cm EC level.

References

Alexander, P., Arneth, A., Henry, R., Maire, J., Rabin, S., & Rounsevell, M.D. (2023). High energy and fertilizer prices are more damaging than food export curtailment from Ukraine and Russia for food prices, health and the environment. Nature Food, 4(1), 84-95. DOI: 10.1038/s43016-022-00659-9

Al-Tawaha, A.R., Al-Karaki, G., Al-Tawaha, A.R., Sirajuddin, S.N., Makhadmeh, I., Megat Wahab, P.E., & Massadeh, A. (2018). Effect of water flow rate on quantity and quality of lettuce (Lactuca sativa L.) in nutrient film technique (NFT) under hydroponics conditions. Bulgarian Journal of Agricultural Science, 24(5), 793-800.

Alrajhi, A.A., Alsahli, A.S., Alhelal, I.M., Rihan, H.Z., Fuller, M.P., Alsadon, A.A., & Ibrahim, A.A. (2023). The effect of LED light spectra on the growth, yield and nutritional value of red and green lettuce (Lactuca sativa). Plants, 12(3), 463. DOI: 10.3390/plants12030463

Andriolo, J.L., Luz, G.L.D., Witter, M.H., Godoi, R.D.S., Barros, G.T., & Bortolotto, O.C. (2005). Growth and yield of lettuce plants under salinity. Horticultura Brasileira, 23, 931-934. DOI: https://doi.org/10.1590/S0102-05362005000400014

Bolivar, A., Saiz-Abajo, M. J., Garcia-Gimeno, R. M., Petri-Ortega, E., Diez-Leturia, M., Gonzalez, D., & Perez-Rodriguez, F. (2023). Cross contamination of Escherichia coli O157: H7 in fresh-cut leafy vegetables: Derivation of a food safety objective and other risk management metrics. Food Control, 147, 109599. DOI: 10.1016/j.fm.2014.08.025

Calori, A.H., Purquerio, L.F.V., Factor, T.L., Júnior, S.L., & Moraes, L.A.S. (2019). Effects of electric conductivity and plant density on lettuce baby leaf production in NFT hydroponic system. Acta Horticulturae, 1249, 5-10. DOI: https://doi.org/10.17660/ActaHortic.2019.1249.2

Caputo, S. (2022). History, techniques and technologies of soil-less cultivation. Small Scale Soil-less Urban Agriculture in Europe, 45-86. DOI: 10.1007/978-3-030-99962-9_4

Ciriello, M., Formisano, L., Pannico, A., El-Nakhel, C., Fascella, G., Duri, L. G., & Carillo, P. (2021). Nutrient solution deprivation as a tool to improve hydroponics sustainability: Yield, physiological, and qualitative response of lettuce. Agronomy, 11(8), 1469. DOI: https://doi.org/10.3390/agronomy11081469

Dalastra, C., Teixeira Filho, M., da Silva, M.R., Nogueira, T.A., & Fernandes, G.C. (2020). Head lettuce production and nutrition in relation to nutrient solution flow. Horticultura Brasileira, 38, 21-26. DOI: 10.1590/S0102-053620200103

Engindeniz, S., & Tuzel, Y. (2006). Economic analysis of organic greenhouse lettuce production in Turkey. Scientia Agricola, 63, 285-290. DOI: https://doi.org/10.1590/S0103-90162006000300012

Frasetya, B., Harisman, K., & Ramdaniah, N.A.H. (2021). The effect of hydroponics systems on the growth of lettuce. In IOP Conference Series: Materials Science and Engineering, 1098(4), 042115. DOI: 10.1088/1757-899X/1098/4/042115

FDA. Commodity Specific Food Safety Guidelines for the Lettuce and Leafy Greens Supply Chain 1st Edition. Available online: https://www.fda.gov/media/77279/download (accessed on 13

Gimenez, A., Fernández, J.A., Pascual, J.A., Ros, M., & Egea-Gilabert, C. (2020). Application of directly brewed compost extract improves yield and quality in baby leaf lettuce grown hydroponically. Agronomy, 10(3), 370. DOI: https://doi.org/10.3390/agronomy10030370

Gumisiriza, M.S., Ndakidemi, P., Nalunga, A., & Mbega, E.R. (2022). Building sustainable societies through vertical soilless farming: A cost-effectiveness analysis on a small-scale non-greenhouse hydroponic system. Sustainable Cities and Society, 83, 103923. DOI: 10.1016/j.scs.2022.103923

Gumisiriza, M.S., Ndakidemi, P.A., & Mbega, E.R. (2022). A simplified non-greenhouse hydroponic system for small-scale soilless urban vegetable farming. MethodsX, 9, 101882. DOI: https://doi.org/10.1016/j.mex.2022.101882

Ikkonen, E., & Kaznina, N. (2022). Physiological responses of lettuce (Lactuca sativa L.) to soil contamination with Pb. Horticulturae 2022, 8, 951. DOI: https://doi.org/10.3390/horticulturae8100951

Kappel, N., Boros, I.F., Ravelombola, F.S., & Sipos, L. (2021). EC sensitivity of hydroponically-grown lettuce (Lactuca sativa L.) types in terms of nitrate accumulation. Agriculture, 11(4), 315. DOI: https://doi.org/10.3390/agriculture11040315

Lee, J. S., Chandra, D., & Son, J. (2022). Growth, physicochemical, nutritional, and postharvest qualities of leaf lettuce (Lactuca sativa L.) as affected by cultivar and amount of applied nutrient solution. Horticulturae, 8(5), 436. DOI: https://doi.org/10.3390/horticulturae8050436

Lebeda, A., Křístková, E., Kitner, M., Widrlechner, M. P., Maras, M., & El-Esawi, M.A. (2022). Egypt as one of the centers of lettuce domestication: morphological and genetic evidence. Euphytica, 218, 10. DOI: 10.1007/s10681-021-02960-3

Majid, M., Khan, J.N., Shah, Q.M.A., Masoodi, K.Z., Afroza, B., & Parvaze, S. (2021). Evaluation of hydroponic systems for the cultivation of Lettuce (Lactuca sativa L., var. Longifolia) and comparison with protected soil-based cultivation. Agricultural Water Management, 245, 106572. DOI: 10.1016/j.agwat.2020.106572

Medina-Lozano, I., Bertolín, J. R., & Díaz, A. (2021). Nutritional value of commercial and traditional lettuce (Lactuca sativa L.) and wild relatives: Vitamin C and anthocyanin content. Food Chemistry, 359, 129864. DOI: https://doi.org/10.1016/j.foodchem.2021.129864

Miller, A., Langenhoven, P., & Nemali, K. (2020). Maximizing productivity of greenhouse-grown hydroponic lettuce during winter. HortScience, 55(12), 1963-1969. DOI: https://doi.org/10.21273/HORTSCI15351-20

Moraes, L.A., Calori, A.H., Factor, T.L., Patrício, F.R., Ghini, R., Abreu, M.F., & Purquerio, L.F. (2016). Baby leaf lettuce production in trays with reused and solarized substrate. Horticultura Brasileira, 34, 463-469. DOI: https://doi.org/10.1590/S0102-053620160403

Moreno-Perez, E.D.C., Castillo, S.D., Gutierrez-Tlaque, J., Gonzalez-Molina, L., Pineda-Pineda, J. (2015). Greenhouse lettuce production with and without nutrient solution recycling. Revista Chapingo. Serie Horticultura, 21(1), 43-55. DOI: https://doi.org/10.5154/r.rchsh.2013.12.047

Morris, M.C., Wang, Y., Barnes, L.L., Bennett, D.A., Dawson-Hughes, B., & Booth, S.L. (2018). Nutrients and bioactives in green leafy vegetables and cognitive decline: Prospective study. Neurology, 90(3), 214-222. DOI: 10.1212/WNL.0000000000004815

Novaes, H.B., Vaitsman, D.S., Dutra, P.B., & Pérez, D.V. (2009). Determination of nitrate in lettuce by ion chromatography after microwave water extraction. Quimica Nova, 32, 1647-1650. DOI: 10.1590/S0100-40422009000600049

Paradelo, R., Villada, A., & Barral, M.T. (2020). Heavy metal uptake of lettuce and ryegrass from urban waste composts. International Journal of Environmental Research and Public Health, 17(8), 2887. DOI: https://doi.org/10.3390/ijerph17082887

Qadir, O., Siervo, M., Seal, C.J., & Brandt, K. (2017). Manipulation of contents of nitrate, phenolic acids, chlorophylls, and carotenoids in lettuce (Lactuca sativa L.) via contrasting responses to nitrogen fertilizer when grown in a controlled environment. Journal of Agricultural and Food Chemistry, 65(46), 10003-10010. DOI: 10.1021/acs.jafc.7b03675

Raviv, M., Lieth, J.H., & Bar-Tal, A. (2019). Significance of soilless culture in agriculture. In: Soilless Culture: Theory and Practice; Academic Press: Cambridge, USA; Elsevier: London, UK, pp. 3–14.

Richa, A., Fizir, M., & Touil, S. (2021). Advanced monitoring of hydroponic solutions using ion-selective electrodes and the internet of things: a review. Environmental Chemistry Letters, 19(4), 3445-3463. DOI: 10.1007/s10311-021-01233-8

Sublett, W.L., Barickman, T.C., & Sams, C.E. (2018). The effect of environment and nutrients on hydroponic lettuce yield, quality, and phytonutrients. Horticulturae, 4(4), 48. DOI: https://doi.org/10.3390/horticulturae4040048

Thomas, T., Biradar, M.S., Chimmad, V.P., & Janagoudar, B.S. (2021). Growth and physiology of lettuce (Lactuca sativa L.) cultivars under different growing systems. Plant Physiology Reports, 26(3), 526-534. DOI: 10.1007/s40502-021-00591-3

Ugrinović, M., Oljača, S., Brdar-Jokanović, M., Zdravković, J., Girek, Z., & Zdravković, M. (2011). The effect of liquid and soluble fertilizers on lettuce yield. Savremena poljoprivreda, 60(1-2), 110-115.

Voogt, W., & Bar-Yosef, B. (2019). Water and nutrients management and crops response to nutrient solution recycling in soilless growing systems in greenhouses. In: Soilless Culture: Theory and Practice; Raviv, M., Lieth, J.H., Bar-Tal, A., Eds.; Academic Press: Cambridge. DOI: https://doi.org/10.1016/B978-0-444-63696-6.00010-4

Wang, L., Ning, S., Zheng, W., & Ben-Gal A. (2023). Performance analysis of two typical greenhouse lettuce production systems: commercial hydroponic production and traditional soil cultivation. Frontiers in Plant Science, 14, 1165856. DOI: https://doi.org/10.3389/fpls.2023.1165856

Downloads

Published

2024-05-15

Issue

Section

Articles