Understanding the response of fruit crops to drought stress and irrigation needs under climate change conditi
DOI:
https://doi.org/10.63356/agrores.2025.007Keywords:
climate, fruits, irrigation, evapotranspiration, decisionAbstract
Climate change has significantly altered weather patterns, increasing the frequency and intensity of drought events and posing serious challenges to agricultural production, particularly fruits. Water scarcity and increased evapotranspiration demands, posing critical challenges to global agriculture and threatening the sustainability of fruit production. Understanding the response of fruit crops to drought stress and their specific irrigation needs is essential for developing resilient and sustainable cultivation systems. This work aims to consolidate existing research and provide a comprehensive analysis of strategies to mitigate the impacts of water scarcity on fruit crops. The paper focuses on the following key areas: (1) evaluating the growth and performance of fruit crops across diverse environments and cultivation methods; (2) assessing the water needs of fruit crops, including evapotranspiration rates, crop coefficients, and strategies for efficient water use; (3) identifying and recommending the most effective irrigation methods; (4) exploring advanced tools for real-time monitoring of plant water status; and (5) comparing and evaluating existing models for quantifying plant water requirements under drought conditions, with an emphasis on their potential integration into decision support systems (DSS). By addressing these critical aspects, it aims to provide actionable insights and foster the adoption of innovative irrigation and water management strategies to support sustainable fruit crop production in the context of climate change.
References
Abdoussalami, A., Hu, Z., Islam, A. R. M. T., & Wu, Z. (2023). Climate change and its impacts on banana production: a systematic analysis. Environ Dev Sustain, 25, 12217–12246. DOI: 10.1007/s10668-023-03168-2
Agrawal, Y., Kumar, M., Ananthakrishnan, S., & Kumarapuram, G. (2022). Evapotranspiration Modeling Using Different Tree Based Ensembled Machine Learning Algorithm. Water Resour Manag, 36, 1025-1042. DOI: 10.1007/s11269-022-03067-7
Allen, R. G., Pereira, L. S., Raes. D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. Irrigation. Food and Agriculture Organization of the United Nations, Rome
Blum, A, (2011). Plant Breeding for Water-Limited Environments. Springer, New York.
Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ, 40(1), 4-10. DOI: 10.1111/pce.12800
Čereković, N., Jarret, D., Pagter, M., Cullen, D., Morris, J., Hedley, P., Brennan, R., & Petersen. K. K. (2015). The effects of drought stress on leaf gene expression during flowering in blackcurrant (Ribes nigrum L.). Eur J Hortic Sci, 80 (1), 39-46. DOI: 10.17660/eJHS.2015/80.1.6
Čereković, N., Pagter, M., Kristensen, H. L., Brennan, R., & Petersen, K. K. (2014). Effects of deficit irrigation during flower initiation of two blackcurrant (Ribes nigrum L.) cultivars. Sci Hortic, 168, 193-201. DOI: 10.1016/j.scienta.2014.01.039
Čereković, N., Pagter, M., Kristensen, H. L., Pedersen, H. L., Brennan, R., & Petersen, K. K. (2013). Effects of drought stress during flowering of two pot-grown blackcurrant (Ribes nigrum L.) cultivars. Sci Hortic, 162, 365-373. DOI: 10.1016/j.scienta.2013.08.026
Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought - from genes to the whole plant. Funct Plant Biol, 30(3), 239-264. DOI: 10.1071/fp02076
Chen, Z., Zhu, Z., Jiang, H., & Shijun, S. (2020). Sun Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. J Hydrol, 591. DOI: 10.1016/j.jhydrol.2020.125286
Cimen, B., Yesiloglu, T., & Yilmaz, B. (2014). Growth and photosynthetic response of young ‘Navelina’ trees budded on to eight citrus rootstocks in response to iron deficiency. N Z J Crop Hortic Sci, 42 (3), 170-182. DOI: 10.1080/01140671.2014.885064
Drepper, B., Gobin, A., Remy, S., & Van Orshoven, J. (2020). Comparing Apple and Pear Phenology and Model Performance: What Seven Decades of Observations Reveal. Agronomy, 10, 73. DOI: 10.3390/agronomy10010073
Elbeltagi, A., Nagy, A., Mohammed, S., Pande, C. B., Kumar, M., Bhat, S. A., Zsembeli, J., Huzsvai, L., Tamás, J., Kovács, E., Harsányi, E., & Juhász, C. (2022). Combination of Limited Meteorological Data for Predicting Reference Crop Evapotranspiration Using Artificial Neural Network Method. Agronomy, 12(2), 516. DOI: 10.3390/agronomy12020516
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agron Sustain Dev, 29,185-212. DOI: 10.1051/agro:2008021
Farooq, M.S., Uzair, M., Raza, A., Habib, M., Xu, Y., Yousuf, M., Yang, S.H., & Ramzan, K. M. (2022). Uncovering the research gaps to alleviate the negative impacts of climate change on food security: A review. Front Plant Sci, 13, 1-39. DOI: 10.3389/fpls.2022.927535
Galindo, A., Collado-González, J., Griñán, I., Corell, M., Centeno, A., Martín-Palomo, M. J., Girón, I. F., Rodríguez, P., Cruz, Z. N., Memmi, H., Carbonell-Barrachina, A. A., Hernández, F., Torrecillas, A., Moriana, A., & López-Pérez, D. (2017). Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems. Agric Water Manag, 202, 311-324. DOI: 10.1016/j.agwat.2017.08.015
García-Tejero, I. F., López-Borrallo, D., Miranda, L., Medina, J. J., Arriaga, J., Muriel-Fernández, J. L., & Martínez-Ferri E. (2018). Estimating Strawberry Crop Coefficients under Plastic Tunnels in Southern Spain by Using Drainage Lysimeters. Sci Hortic, 231, 233-240. DOI: 10.1016/j.scienta.2017.12.020
Gavilan, P., Higueras, J. L., Lozano, D., Ruiz, N. (2024). The Riego Berry mobile application: A powerful tool to improve on-farm irrigation performance in berry crops. Agric Water Manag, 292, 233-240. DOI: 10.1016/j.agwat.2024.108682
Gavilán, P., Ruiz, N., & Lozano, D. (2015). Daily forecasting of reference and strawberry crop evapotranspiration in greenhouses in a Mediterranean climate based on solar radiation estimates. Agric Water Manag, 159, 307-317. DOI: 10.1016/j.agwat.2015.06.012
Gocić, M., & Amiri, M. A. (2021). Reference evapotranspiration prediction using neural networks and optimum time lags. Water Resour Manag, 35, 1913-1926. DOI: 10.1007/s11269-021-02820-8
Gitea, M. A., Gitea, D., Tit, D. M., Purza, L., Samuel, A. D., Bungău, S., Badea, G. E., & Aleya, L. (2019). Orchard management under the effects of climate change: implications for apple, plum, and almond growing. Environ Sci Pollut Res Int, 9908-9915. DOI: 10.1007/s11356-019-04214-1
Grigorieva, E., Livenets, A., & Stelmakh, E. (2023). Adaptation of Agriculture to Climate Change: A Scoping Review. Climate, 11, 202. https://doi.org/10.3390/cli11100202
Guebsi, R., Mami, S., & Chokmani, K. (2024). Drones in Precision Agriculture: A Comprehensive Review of Applications, Technologies, and Challenges. Drones, 8(11), 686. DOI: 10.3390/drones8110686
Hadadi, F., Moazenzadeh, R., & Mohammadi, B. (2022). Estimation of actual evapotranspiration: A novel hybrid method based on remote sensing and artificial intelligence. J Hydrol, 609, 127774. DOI: 10.1016/j.jhydrol.2022.127774
Hsiao, T. C. (1973). Plant responses to water stress. Annu Rev Plant Physiol, 24, 519-570. DOI: 10.1146/annurev.pp.24.060173.002511
Hsiao, T. C., & Acevedo, E. (1979). Plant responses to water deficits, efficiency, and drought resistance. Agric Meteorol, 14, 59-84. DOI: 10.1016/0002-1571(74)90011-9
Imtiaz, F., Farooque, A. A., Randhawa, G. S., Wang, X., Esau, T. J., Acharya, B., Ebrahim, S., & Garmdareh, H. (2024). An inclusive approach to crop soil moisture estimation: Leveraging satellite thermal infrared bands and vegetation indices on Google Earth engine. Agric Water Manag, 306. DOI: 10.1016/j.agwat.2024.109172
IPCC (2023) “Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.” In edited by H. Lee and J. Romero, 35–115. Geneva, Switzerland: IPCC. DOI:10.59327/ IPCC/AR6-9789291691647
Karagatiya, F. P., Patel, S., Parasana, J. S., Vasava, H. V., Chaudhari, T. M., Kanzaria, D. R., & Paramar, V. (2023). Adapting fruit crops to climate change: Strengthening resilience and implementing adaptation measures in fruit crops. Pharma Innovation, 12 (7), 3159-3164.
Kaufmann, H., & Blanke, M. (2019). Substitution of winter chilling by spring forcing for flowering using sweet cherry as model crop. Sci Hortic, 244, 75-81. DOI: 10.1016/j.scienta.2018.09.021
Kazan, K., & Lyons, R. (2016). The link between flowering time and stress tolerance. J Exp Bot, 67 (1), 47-60. DOI: 10.1093/jxb/erv441
Kozlowski, T. T., Kramer, P. J., & Pallardy, S. G. (1991). The physiological ecology of woody plants. San Diego: Academic Press.
Kul, R., Ekinci, M., Turan, M., Ors, S., & Yildirim, E. (2020). How abiotic stress conditions affects plant roots. In Plant Roots; Yildirim, E., Turan, M., Ekinci, M., Eds.; IntechOpen: London, UK. DOI: 10.5772/intechopen.95286
Kumari, A., Lakshmi, G. A., Krishna, G. K., Patni, B., Prakash, S., Bhattacharyya, M., Singh, S. K., & Verma, K. K. (2022). Climate Change and Its Impact on Crops: A Comprehensive Investigation for Sustainable Agriculture. Agronomy, 12. DOI: 10.3390/agronomy12123008
López-Galiano, M. J., García-Robles, I., González-Hernández, A. I., Camañes, G., Vicedo, B., & Real, M. D., & Rausell C. (2019). Expression of miR159 is altered in tomato plants undergoing drought stress. Plants, 8:201. DOI: 10.3390/plants8070201
Manzoor, M., Xu, Y., Iv, Z., Xu, J., Shah, I., Sabir, I., Wang, Y., Sun, W., Liu, X., Wang, L., Liu, R., Jiu, S., & Zhang, C. (2024). Horticulture crop under pressure: Unraveling the impact of climate change on nutrition and fruit cracking. J Environ Manag, 357, DOI: 10.1016/j.jenvman.2024.120759
McCabe, M. F., Rodell, M., Alsdorf, D. E., Miralles, D. G., Uijlenhoet, R., Wagner, W., Lucieer, A., Houborg, R., Verhoest, N. E. C., Franz, T. E., Shi, J., Gao, H., & Wood, F, E. (2017). The future of Earth observation in hydrology. Hydrol Earth Syst Sci, 21 (7), 3879–3914. DOI: 10.5194/hess-21-3879-2017
McMaster, G. S., & Willhelm, W. W. (1997). Growing degree-days: one equation, two interpretations. Agric For Meteorol, 87, 291-300. DOI: 10.1016/S0168-1923(97)00027-0
Meza, F., Darbyshire, R., Farrell, A., Lakso, A., Lawson, J., Meinke, H., Nelson, G., & Stockle, C. (2023). Assessing temperature-based adaptation limits to climate change of temperate perennial fruit crops. Glob Change Biol, 29, 2557-2571. DOI: 10.1111/gcb.16601
Michler, J. D., Baylis, K., Arends-Kuenning, M., & Mazvimavi, K. (2019). Conservation agriculture and climate resilience. J Environ Econ Manag, 93, 148-169. DOI: 10.1016/j.jeem.2018.11.008
Millán, S., Montesinos, C., & Campillo, C. (2024). Evaluation of Different Commercial Sensors for the Development of Their Automatic Irrigation System. Sensors, 24, 7468. DOI: 10.3390/s24237468
Nikolaou, G., Neocleous, D., Christou, A., Kitta, E., & Katsoulas, N. (2020). Implementing Sustainable Irrigation in Water-Scarce Regions under the Impact of Climate Change. Agronomy, 10 (8). DOI: 10.3390/agronomy10081120
Osorio-Marín, J., Fernandez, E., Vieli, L., Ribera, A., Luedeling, E., & Cobo, N. (2024). Climate change impacts on temperate fruit and nut production: a systematic review. Front Plant Sci, 18(15). DOI: 10.3389/fpls.2024.1352169
Pacheco-Labrador, J., Cendrero-Mateo, M. P., Van Wittenberghe, S., Hernandez-Sequeira, I., Koren, G., Prikaziuk, E., Fóti, S., Tomelleri, E., Maseyk, K., Čereković, N., Gonzalez-Cascon, R., Malenovský, Z., Albert Saiz, M., Antala, M., Balogh, J., Buddenbaum, H., Shoar, M. H. D., Fennell, J. T., Féret, J. B., Balde, H., Machwitz, M., Mészáros, Á., Miao, G., Morata, M., Naethe, P., Nagy, Z., Pintér, K., Pullanagari, R. R., Rastogi, A., Siegmann, B., Wang, S., Zhang, C., & Kopkáně, D. (2024). Ecophysiological variables retrieval and early stress detection: insights from a synthetic spatial scaling exercise. Int J Remote Sens, 46(1), 443-468. DOI: 10.1080/01431161.2024.2414435
Pérez-Álvarez, E., Molina, D. I., Vivaldi, G., García-Esparza, M., Lizama, V., & Álvarez, I. (2021). Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: I. Water relations, vine performance and grape composition. Agric Water Manag, 248. DOI: 10.1016/j.agwat.2021.106772
Playán, E., Čereković, N., Marković, M., Vaško, Ž., Vekić, M., Mujčinović, A., Čadro, S., Hajder, Đ., Šipka, M., Bećirović, E., Musić, O., Grahić, J., Todorović, M., Stojaković, N., Almeida, W. S., Paço, T. A, Dechmi, F., Paniagua, P., & Zapata, N. (2024). A roadmap to consolidate research and innovation in agricultural water management in Bosnia and Herzegovina. Agric Water Manag, 293, 1-13. DOI: 10.1016/j.agwat.2024.108699
RECROP COST (2024). Integrative approaches to enhance reproductive resilience of crops for climate-proof agriculture. Plant Stress, DOI: 10.1016/j.stress.2024.100704
Roussos, P. A. (2024). Climate Change Challenges in Temperate and Sub-Tropical Fruit Tree Cultivation. Encyclopedia, 4, 558-582. DOI: 10.3390/encyclopedia4010036
Ruiz-Sánchez, M. C., Abrisqueta, I., Conejero, W., & Vera, J. (2018). Deficit irrigation management in early-maturing peach crop. In Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies, and Challenges for Woody Crops; Elsevier BV: Amsterdam, The Netherlands, 6, 111-129. DOI: 10.1016/b978-0-12-813164-0.00006-5
Salama, A. M., Ezzat, A., El-Ramady, H., Alam-Eldein, S. M., Okba, S. K., Elmenofy, H. M., Hassan, I. F., Illés, A., & Holb, I. J. (2021). Temperate Fruit Trees under Climate Change: Challenges for Dormancy and Chilling Requirements in Warm Winter Regions. Horticulturae 7, 86. DOI: 10.3390/horticulturae7040086
Sato, H., Mizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2024). Complex plant responses to drought and heat stress under climate change. Plant J, 117, 1873-1892. DOI: 10.1111/tpj.16612
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants, 10(2), 259. DOI: 10.3390/plants10020259
Sugiura, S., & Yokozawa, M. (2004). Impact of Global Warming on Environment for Apple and Satsuma mandarin Production Estimated from Change of the Annual Mean Temperature. J Jpn Soc Hort Sci, 73, 72-78. DOI: 10.2503/jjshs.73.72
Srdić, S., Srđević, Z., Stričević, R., Čereković, N., Benka, P., Rudan, N., Rajić, M., & Todorović, M. (2023). Assessment of Empirical Methods for Estimating Reference Evapotranspiration in Different Climatic Zones of Bosnia and Herzegovina. Water, 15, 3065. DOI: 10.3390/w15173065
Sruthi, S., & Mohammed Aslam, M. A. (2015). Agricultural Drought Analysis Using the NDVI and Land Surface Temperature Data; a Case Study of Raichur District. Aquat Procedia, 4, 1258-1264. DOI: 10.1016/j.aqpro.2015.02.164
Tian, F., Hu, X. L., Yao, T., Yang, X., Chen, J.G., Lu, M. Z., & Zhang, J. (2021). Recent Advances in the Roles of HSFs and HSPs in Heat Stress Response in Woody Plants. Front Plant Sci, 9(12). DOI: 10.3389/fpls.2021.704905
Vujadinović Mandić, M., Vuković Vimić, A., Fotirić Akšić, M., & Meland, M. (2023). Climate Potential for Apple Growing in Norway-Part 2: Assessment of Suitability of Heat Conditions under Future Climate Change. Atmosphere, 14, 937. DOI: 10.3390/atmos14060937
WMO (2023). The Global Climate 2011-2020 (WMO-No. 1338). A decade of accelerating climate change. Geneva, Switzerland: World Meteorological Organization. Available at: https://library.wmo.int/idurl/4/68585
Wolf, M. K., Wiesmeier, M., & Macholdt, J. (2023). Importance of soil fertility for climate-resilient cropping systems: The farmer’s perspective. Soil Secur, 13. DOI: 10.1016/j.soisec.2023.100119
Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response Mechanism of Plants to Drought Stress. Horticulturae, 7, 50. DOI: 10.3390/horticulturae7030050
Yuan, B. Z., Sun, J., & Nishiyama, S. (2004). Effect of drip irrigation on strawberry growth and yield inside a plastic greenhouse. Biosyst Eng, 87, 237-245. DOI: 10.1016/j.biosystemseng.2003.10.014
Zhu, B., Feng, Y., Gong, D., Jiang, S., Zhao, L., & Cui, N. (2020). Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data. Comput Electron Agric, 173. DOI: 10.1016/j.compag.2020.105430
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nataša Čereković, Mirela Kajkut Zeljković, Vanja Daničić

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.