Understanding the response of fruit crops to drought stress and irrigation needs under climate change conditi

Authors

  • Nataša Čereković University of Banja Luka, Institute of Genetics Resources, Banja Luka, Bosnia and Herzegovina
  • Mirela Kajkut Zeljković University of Banja Luka, Institute of Genetics Resources, Banja Luka, Bosnia and Herzegovina
  • Vanja Daničić University of Banja Luka, Faculty of Forestry, Banja Luka, Bosnia and Herzegovina

DOI:

https://doi.org/10.63356/agrores.2025.007

Keywords:

climate, fruits, irrigation, evapotranspiration, decision

Abstract

Climate change has significantly altered weather patterns, increasing the frequency and intensity of drought events and posing serious challenges to agricultural production, particularly fruits. Water scarcity and increased evapotranspiration demands, posing critical challenges to global agriculture and threatening the sustainability of fruit production. Understanding the response of fruit crops to drought stress and their specific irrigation needs is essential for developing resilient and sustainable cultivation systems. This work aims to consolidate existing research and provide a comprehensive analysis of strategies to mitigate the impacts of water scarcity on fruit crops. The paper focuses on the following key areas: (1) evaluating the growth and performance of fruit crops across diverse environments and cultivation methods; (2) assessing the water needs of fruit crops, including evapotranspiration rates, crop coefficients, and strategies for efficient water use; (3) identifying and recommending the most effective irrigation methods; (4) exploring advanced tools for real-time monitoring of plant water status; and (5) comparing and evaluating existing models for quantifying plant water requirements under drought conditions, with an emphasis on their potential integration into decision support systems (DSS). By addressing these critical aspects, it aims to provide actionable insights and foster the adoption of innovative irrigation and water management strategies to support sustainable fruit crop production in the context of climate change.

References

Abdoussalami, A., Hu, Z., Islam, A. R. M. T., & Wu, Z. (2023). Climate change and its impacts on banana production: a systematic analysis. Environ Dev Sustain, 25, 12217–12246. DOI: 10.1007/s10668-023-03168-2

Agrawal, Y., Kumar, M., Ananthakrishnan, S., & Kumarapuram, G. (2022). Evapotranspiration Modeling Using Different Tree Based Ensembled Machine Learning Algorithm. Water Resour Manag, 36, 1025-1042. DOI: 10.1007/s11269-022-03067-7

Allen, R. G., Pereira, L. S., Raes. D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. Irrigation. Food and Agriculture Organization of the United Nations, Rome

Blum, A, (2011). Plant Breeding for Water-Limited Environments. Springer, New York.

Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ, 40(1), 4-10. DOI: 10.1111/pce.12800

Čereković, N., Jarret, D., Pagter, M., Cullen, D., Morris, J., Hedley, P., Brennan, R., & Petersen. K. K. (2015). The effects of drought stress on leaf gene expression during flowering in blackcurrant (Ribes nigrum L.). Eur J Hortic Sci, 80 (1), 39-46. DOI: 10.17660/eJHS.2015/80.1.6

Čereković, N., Pagter, M., Kristensen, H. L., Brennan, R., & Petersen, K. K. (2014). Effects of deficit irrigation during flower initiation of two blackcurrant (Ribes nigrum L.) cultivars. Sci Hortic, 168, 193-201. DOI: 10.1016/j.scienta.2014.01.039

Čereković, N., Pagter, M., Kristensen, H. L., Pedersen, H. L., Brennan, R., & Petersen, K. K. (2013). Effects of drought stress during flowering of two pot-grown blackcurrant (Ribes nigrum L.) cultivars. Sci Hortic, 162, 365-373. DOI: 10.1016/j.scienta.2013.08.026

Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought - from genes to the whole plant. Funct Plant Biol, 30(3), 239-264. DOI: 10.1071/fp02076

Chen, Z., Zhu, Z., Jiang, H., & Shijun, S. (2020). Sun Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. J Hydrol, 591. DOI: 10.1016/j.jhydrol.2020.125286

Cimen, B., Yesiloglu, T., & Yilmaz, B. (2014). Growth and photosynthetic response of young ‘Navelina’ trees budded on to eight citrus rootstocks in response to iron deficiency. N Z J Crop Hortic Sci, 42 (3), 170-182. DOI: 10.1080/01140671.2014.885064

Drepper, B., Gobin, A., Remy, S., & Van Orshoven, J. (2020). Comparing Apple and Pear Phenology and Model Performance: What Seven Decades of Observations Reveal. Agronomy, 10, 73. DOI: 10.3390/agronomy10010073

Elbeltagi, A., Nagy, A., Mohammed, S., Pande, C. B., Kumar, M., Bhat, S. A., Zsembeli, J., Huzsvai, L., Tamás, J., Kovács, E., Harsányi, E., & Juhász, C. (2022). Combination of Limited Meteorological Data for Predicting Reference Crop Evapotranspiration Using Artificial Neural Network Method. Agronomy, 12(2), 516. DOI: 10.3390/agronomy12020516

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agron Sustain Dev, 29,185-212. DOI: 10.1051/agro:2008021

Farooq, M.S., Uzair, M., Raza, A., Habib, M., Xu, Y., Yousuf, M., Yang, S.H., & Ramzan, K. M. (2022). Uncovering the research gaps to alleviate the negative impacts of climate change on food security: A review. Front Plant Sci, 13, 1-39. DOI: 10.3389/fpls.2022.927535

Galindo, A., Collado-González, J., Griñán, I., Corell, M., Centeno, A., Martín-Palomo, M. J., Girón, I. F., Rodríguez, P., Cruz, Z. N., Memmi, H., Carbonell-Barrachina, A. A., Hernández, F., Torrecillas, A., Moriana, A., & López-Pérez, D. (2017). Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems. Agric Water Manag, 202, 311-324. DOI: 10.1016/j.agwat.2017.08.015

García-Tejero, I. F., López-Borrallo, D., Miranda, L., Medina, J. J., Arriaga, J., Muriel-Fernández, J. L., & Martínez-Ferri E. (2018). Estimating Strawberry Crop Coefficients under Plastic Tunnels in Southern Spain by Using Drainage Lysimeters. Sci Hortic, 231, 233-240. DOI: 10.1016/j.scienta.2017.12.020

Gavilan, P., Higueras, J. L., Lozano, D., Ruiz, N. (2024). The Riego Berry mobile application: A powerful tool to improve on-farm irrigation performance in berry crops. Agric Water Manag, 292, 233-240. DOI: 10.1016/j.agwat.2024.108682

Gavilán, P., Ruiz, N., & Lozano, D. (2015). Daily forecasting of reference and strawberry crop evapotranspiration in greenhouses in a Mediterranean climate based on solar radiation estimates. Agric Water Manag, 159, 307-317. DOI: 10.1016/j.agwat.2015.06.012

Gocić, M., & Amiri, M. A. (2021). Reference evapotranspiration prediction using neural networks and optimum time lags. Water Resour Manag, 35, 1913-1926. DOI: 10.1007/s11269-021-02820-8

Gitea, M. A., Gitea, D., Tit, D. M., Purza, L., Samuel, A. D., Bungău, S., Badea, G. E., & Aleya, L. (2019). Orchard management under the effects of climate change: implications for apple, plum, and almond growing. Environ Sci Pollut Res Int, 9908-9915. DOI: 10.1007/s11356-019-04214-1

Grigorieva, E., Livenets, A., & Stelmakh, E. (2023). Adaptation of Agriculture to Climate Change: A Scoping Review. Climate, 11, 202. https://doi.org/10.3390/cli11100202

Guebsi, R., Mami, S., & Chokmani, K. (2024). Drones in Precision Agriculture: A Comprehensive Review of Applications, Technologies, and Challenges. Drones, 8(11), 686. DOI: 10.3390/drones8110686

Hadadi, F., Moazenzadeh, R., & Mohammadi, B. (2022). Estimation of actual evapotranspiration: A novel hybrid method based on remote sensing and artificial intelligence. J Hydrol, 609, 127774. DOI: 10.1016/j.jhydrol.2022.127774

Hsiao, T. C. (1973). Plant responses to water stress. Annu Rev Plant Physiol, 24, 519-570. DOI: 10.1146/annurev.pp.24.060173.002511

Hsiao, T. C., & Acevedo, E. (1979). Plant responses to water deficits, efficiency, and drought resistance. Agric Meteorol, 14, 59-84. DOI: 10.1016/0002-1571(74)90011-9

Imtiaz, F., Farooque, A. A., Randhawa, G. S., Wang, X., Esau, T. J., Acharya, B., Ebrahim, S., & Garmdareh, H. (2024). An inclusive approach to crop soil moisture estimation: Leveraging satellite thermal infrared bands and vegetation indices on Google Earth engine. Agric Water Manag, 306. DOI: 10.1016/j.agwat.2024.109172

IPCC (2023) “Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.” In edited by H. Lee and J. Romero, 35–115. Geneva, Switzerland: IPCC. DOI:10.59327/ IPCC/AR6-9789291691647

Karagatiya, F. P., Patel, S., Parasana, J. S., Vasava, H. V., Chaudhari, T. M., Kanzaria, D. R., & Paramar, V. (2023). Adapting fruit crops to climate change: Strengthening resilience and implementing adaptation measures in fruit crops. Pharma Innovation, 12 (7), 3159-3164.

Kaufmann, H., & Blanke, M. (2019). Substitution of winter chilling by spring forcing for flowering using sweet cherry as model crop. Sci Hortic, 244, 75-81. DOI: 10.1016/j.scienta.2018.09.021

Kazan, K., & Lyons, R. (2016). The link between flowering time and stress tolerance. J Exp Bot, 67 (1), 47-60. DOI: 10.1093/jxb/erv441

Kozlowski, T. T., Kramer, P. J., & Pallardy, S. G. (1991). The physiological ecology of woody plants. San Diego: Academic Press.

Kul, R., Ekinci, M., Turan, M., Ors, S., & Yildirim, E. (2020). How abiotic stress conditions affects plant roots. In Plant Roots; Yildirim, E., Turan, M., Ekinci, M., Eds.; IntechOpen: London, UK. DOI: 10.5772/intechopen.95286

Kumari, A., Lakshmi, G. A., Krishna, G. K., Patni, B., Prakash, S., Bhattacharyya, M., Singh, S. K., & Verma, K. K. (2022). Climate Change and Its Impact on Crops: A Comprehensive Investigation for Sustainable Agriculture. Agronomy, 12. DOI: 10.3390/agronomy12123008

López-Galiano, M. J., García-Robles, I., González-Hernández, A. I., Camañes, G., Vicedo, B., & Real, M. D., & Rausell C. (2019). Expression of miR159 is altered in tomato plants undergoing drought stress. Plants, 8:201. DOI: 10.3390/plants8070201

Manzoor, M., Xu, Y., Iv, Z., Xu, J., Shah, I., Sabir, I., Wang, Y., Sun, W., Liu, X., Wang, L., Liu, R., Jiu, S., & Zhang, C. (2024). Horticulture crop under pressure: Unraveling the impact of climate change on nutrition and fruit cracking. J Environ Manag, 357, DOI: 10.1016/j.jenvman.2024.120759

McCabe, M. F., Rodell, M., Alsdorf, D. E., Miralles, D. G., Uijlenhoet, R., Wagner, W., Lucieer, A., Houborg, R., Verhoest, N. E. C., Franz, T. E., Shi, J., Gao, H., & Wood, F, E. (2017). The future of Earth observation in hydrology. Hydrol Earth Syst Sci, 21 (7), 3879–3914. DOI: 10.5194/hess-21-3879-2017

McMaster, G. S., & Willhelm, W. W. (1997). Growing degree-days: one equation, two interpretations. Agric For Meteorol, 87, 291-300. DOI: 10.1016/S0168-1923(97)00027-0

Meza, F., Darbyshire, R., Farrell, A., Lakso, A., Lawson, J., Meinke, H., Nelson, G., & Stockle, C. (2023). Assessing temperature-based adaptation limits to climate change of temperate perennial fruit crops. Glob Change Biol, 29, 2557-2571. DOI: 10.1111/gcb.16601

Michler, J. D., Baylis, K., Arends-Kuenning, M., & Mazvimavi, K. (2019). Conservation agriculture and climate resilience. J Environ Econ Manag, 93, 148-169. DOI: 10.1016/j.jeem.2018.11.008

Millán, S., Montesinos, C., & Campillo, C. (2024). Evaluation of Different Commercial Sensors for the Development of Their Automatic Irrigation System. Sensors, 24, 7468. DOI: 10.3390/s24237468

Nikolaou, G., Neocleous, D., Christou, A., Kitta, E., & Katsoulas, N. (2020). Implementing Sustainable Irrigation in Water-Scarce Regions under the Impact of Climate Change. Agronomy, 10 (8). DOI: 10.3390/agronomy10081120

Osorio-Marín, J., Fernandez, E., Vieli, L., Ribera, A., Luedeling, E., & Cobo, N. (2024). Climate change impacts on temperate fruit and nut production: a systematic review. Front Plant Sci, 18(15). DOI: 10.3389/fpls.2024.1352169

Pacheco-Labrador, J., Cendrero-Mateo, M. P., Van Wittenberghe, S., Hernandez-Sequeira, I., Koren, G., Prikaziuk, E., Fóti, S., Tomelleri, E., Maseyk, K., Čereković, N., Gonzalez-Cascon, R., Malenovský, Z., Albert Saiz, M., Antala, M., Balogh, J., Buddenbaum, H., Shoar, M. H. D., Fennell, J. T., Féret, J. B., Balde, H., Machwitz, M., Mészáros, Á., Miao, G., Morata, M., Naethe, P., Nagy, Z., Pintér, K., Pullanagari, R. R., Rastogi, A., Siegmann, B., Wang, S., Zhang, C., & Kopkáně, D. (2024). Ecophysiological variables retrieval and early stress detection: insights from a synthetic spatial scaling exercise. Int J Remote Sens, 46(1), 443-468. DOI: 10.1080/01431161.2024.2414435

Pérez-Álvarez, E., Molina, D. I., Vivaldi, G., García-Esparza, M., Lizama, V., & Álvarez, I. (2021). Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: I. Water relations, vine performance and grape composition. Agric Water Manag, 248. DOI: 10.1016/j.agwat.2021.106772

Playán, E., Čereković, N., Marković, M., Vaško, Ž., Vekić, M., Mujčinović, A., Čadro, S., Hajder, Đ., Šipka, M., Bećirović, E., Musić, O., Grahić, J., Todorović, M., Stojaković, N., Almeida, W. S., Paço, T. A, Dechmi, F., Paniagua, P., & Zapata, N. (2024). A roadmap to consolidate research and innovation in agricultural water management in Bosnia and Herzegovina. Agric Water Manag, 293, 1-13. DOI: 10.1016/j.agwat.2024.108699

RECROP COST (2024). Integrative approaches to enhance reproductive resilience of crops for climate-proof agriculture. Plant Stress, DOI: 10.1016/j.stress.2024.100704

Roussos, P. A. (2024). Climate Change Challenges in Temperate and Sub-Tropical Fruit Tree Cultivation. Encyclopedia, 4, 558-582. DOI: 10.3390/encyclopedia4010036

Ruiz-Sánchez, M. C., Abrisqueta, I., Conejero, W., & Vera, J. (2018). Deficit irrigation management in early-maturing peach crop. In Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies, and Challenges for Woody Crops; Elsevier BV: Amsterdam, The Netherlands, 6, 111-129. DOI: 10.1016/b978-0-12-813164-0.00006-5

Salama, A. M., Ezzat, A., El-Ramady, H., Alam-Eldein, S. M., Okba, S. K., Elmenofy, H. M., Hassan, I. F., Illés, A., & Holb, I. J. (2021). Temperate Fruit Trees under Climate Change: Challenges for Dormancy and Chilling Requirements in Warm Winter Regions. Horticulturae 7, 86. DOI: 10.3390/horticulturae7040086

Sato, H., Mizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2024). Complex plant responses to drought and heat stress under climate change. Plant J, 117, 1873-1892. DOI: 10.1111/tpj.16612

Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants, 10(2), 259. DOI: 10.3390/plants10020259

Sugiura, S., & Yokozawa, M. (2004). Impact of Global Warming on Environment for Apple and Satsuma mandarin Production Estimated from Change of the Annual Mean Temperature. J Jpn Soc Hort Sci, 73, 72-78. DOI: 10.2503/jjshs.73.72

Srdić, S., Srđević, Z., Stričević, R., Čereković, N., Benka, P., Rudan, N., Rajić, M., & Todorović, M. (2023). Assessment of Empirical Methods for Estimating Reference Evapotranspiration in Different Climatic Zones of Bosnia and Herzegovina. Water, 15, 3065. DOI: 10.3390/w15173065

Sruthi, S., & Mohammed Aslam, M. A. (2015). Agricultural Drought Analysis Using the NDVI and Land Surface Temperature Data; a Case Study of Raichur District. Aquat Procedia, 4, 1258-1264. DOI: 10.1016/j.aqpro.2015.02.164

Tian, F., Hu, X. L., Yao, T., Yang, X., Chen, J.G., Lu, M. Z., & Zhang, J. (2021). Recent Advances in the Roles of HSFs and HSPs in Heat Stress Response in Woody Plants. Front Plant Sci, 9(12). DOI: 10.3389/fpls.2021.704905

Vujadinović Mandić, M., Vuković Vimić, A., Fotirić Akšić, M., & Meland, M. (2023). Climate Potential for Apple Growing in Norway-Part 2: Assessment of Suitability of Heat Conditions under Future Climate Change. Atmosphere, 14, 937. DOI: 10.3390/atmos14060937

WMO (2023). The Global Climate 2011-2020 (WMO-No. 1338). A decade of accelerating climate change. Geneva, Switzerland: World Meteorological Organization. Available at: https://library.wmo.int/idurl/4/68585

Wolf, M. K., Wiesmeier, M., & Macholdt, J. (2023). Importance of soil fertility for climate-resilient cropping systems: The farmer’s perspective. Soil Secur, 13. DOI: 10.1016/j.soisec.2023.100119

Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response Mechanism of Plants to Drought Stress. Horticulturae, 7, 50. DOI: 10.3390/horticulturae7030050

Yuan, B. Z., Sun, J., & Nishiyama, S. (2004). Effect of drip irrigation on strawberry growth and yield inside a plastic greenhouse. Biosyst Eng, 87, 237-245. DOI: 10.1016/j.biosystemseng.2003.10.014

Zhu, B., Feng, Y., Gong, D., Jiang, S., Zhao, L., & Cui, N. (2020). Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data. Comput Electron Agric, 173. DOI: 10.1016/j.compag.2020.105430

Downloads

Published

2025-05-23

Issue

Section

Articles