Assessment of microclimate and greenhouse gas emissions in dairy farms
DOI:
https://doi.org/10.63356/agrores.2025.025Keywords:
greenhouse gas, microclimate parameters, dairy farmAbstract
This research was conducted to determine greenhouse gas (GHG) emissions and air quality parameters on dairy farm in Slovenia. A total of 48 measurements were taken, including 40 inside the barn at two different heights (1.5 m and 0.2 m) and 8 measurements outside. The study focused on the concentrations of water vapor (H2O), carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ammonia (NH3) to assess their distribution and potential environmental impact. The measured values of microclimatic parameters and gases were in accordance with the limits of optimal values, except for THI values that indicated the onset of mild heat stress. Based on the results, it was concluded that while GHG concentrations vary depending on location and measurement conditions, proper barn design and management can help maintain air quality within acceptable limits. Several factors influenced the results, including herd size, ventilation efficiency, barn management practices, and air circulation at the time of measurement. The study highlighted the importance of optimizing ventilation and manure management to reduce high gas concentrations inside dairy barns.
References
Berman, A., Horovitz, T., Kaim, M., & Gacitua, H. (2016). A comparison of THI indices leads to a sensible heat-based heat stress index for shaded cattle that aligns temperature and humidity stress. International Journal of Biometeorology, 60, 1453-1462.
Bernabucci, U., Biffani, S., Buggiotti, L., Vitali, A., Lacetera, N., & Nardone, A. (2014). The effects of heat stress in Italian Holstein dairy cattle. Journal of Dairy Science, 97, 471-486.
Biasato, I., D’Angelo, A., Bertone, I., Odore, R., Bellino, C., & D’Angelo, A. (2019). Compost bedded-pack barn as an alternative housing system for dairy cattle in Italy: Effects on animal health and welfare and milk and milk product quality. Italian Journal of Animal Science, 18, 1142-1153. DOI: 10.1080/1828051X.2019.1634045
Black, R. A., Taraba, J. L., Day, G. B., Damasceno, F. A., & Bewley, J. M. (2013). Compost bedded pack dairy barn management, performance, and producer satisfaction. Journal of Dairy Science, 96, 8060-8074. DOI: 10.3168/jds.2012-6251
Bovo, M., Agrusti, M., Benni, S., Torreggiani, D., & Tassinari, P. (2021). Random forest modelling of milk yield of dairy cows under heat stress conditions. Animals (Basel), 11:1305.
Carabano, M.J., Logar, B., Bormann, J., Minet, J., Vanrobays, M.- L., Diaz, C., Tychon, B., Gengler, N., & Hammami, H. (2016). Modeling heat stress under different environmental conditions. Journal of Dairy Science, 99, 3798-3814.
Čobić, T., & Antov, G. (1996). Govedarstvo – proizvodnja mleka. Novi Sad: Univerzitet u Novom Sadu, Poljoprivredni fakultet.
EFSA – European Food Safety Agency. (2009). Scientific opinion on the overall effects of farming systems on dairy cow welfare and disease. The EFSA Journal, 1143, 1–38. DOI: 10.2903/j.efsa.2009.1143
Santolini, E., Bovo, M., Barbaresi, A., Torreggiani, D., & Tassinari, P. (2024). Evaluation of microclimate in dairy farms using different model typologies in computational fluid dynamics analyses. Journal of Agricultural Engineering, 65, 1589. DOI: 10.4081/jae.2024.1589
Ensminger, M. E. (1977). Animal Science (7th ed.). Danville, IL: The Interstate Printers and Publishers, Inc.
Esperanza, F., Balcells, J., Maynegre, J., De la Fuente, G., Sarri, L., & Seradj, A. R. (2023). Measurement of methane and ammonia emissions from compost-bedded pack systems in dairy barns: Tilling effect and seasonal variations. Animals, 13(11), 1871. DOI: 10.3390/ani13111871
Yan, G., Shi, Z., & Li, H. (2021). Critical Temperature-Humidity Index Thresholds Based on Surface Temperature for Lactating Dairy Cows in a Temperate Climate. Agriculture, 11, 970. DOI: 10.3390/agriculture11100970
Yan, G, Li, H, & Shi, Z. (2021). Evaluation of Thermal Indices as the Indicators of Heat Stress in Dairy Cows in a Temperate Climate. Animals, 11(8), 2459. DOI: 10.3390/ani11082459
Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Tackling Climate Change through Livestock – A Global Assessment of Emissions and Mitigation Opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome. DOI: 3/i3437e/i3437e.pdf
Hamilton, S. W., DePeters, E. J., McGarvey, J. A., Lathrop, J., & Mitloehner, F. M. (2009). Greenhouse gas, animal performance, and bacterial population structure responses to dietary Monensin to dairy cows. Journal of Environmental Quality, 39, 106-114. DOI: 10.2134/jeq2009.0157
Henrique, M. N. R., Ribeiro-Filho, M., Civier, M., & Kebreab, E. (2020). Potential to reduce greenhouse gas emissions through different dairy cattle systems in subtropical regions. Plos ONE. DOI: 10.1371/journal.pone.0234687
Herron, J., O’Brien, D., & Shalloo, L. (2022). Life cycle assessment of pasture-based dairy production systems: Current and future performance. Journal of Dairy Science, 105, 5849-5869. DOI: 10.3168/jds.2022-21640
Hristov, A. N., Melgar, A., Wasson, D., & Arndt, C. (2022). Effective nutritional strategies to mitigate enteric methane in dairy cattle. Journal of Dairy Science, 105(10), 8543-8557. DOI: 10.3168/jds.2021-21398
Hristov, S. (2002). Zoohigijena. Beograd: Poljoprivredni fakultet.
IPCC (Intergovernmental Panel on Climate Change). (2014). Climate Change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. DOI: 10.1017/CBO9781107415379
Klaas, I. C., Bjerg, B., Friedmann, S., & Bar, D. (2010). Cultivated barns for dairy cows. Danish Veterinary Journal, 93, 20-29.
Kučević, D., Plavšić, M., Trivunović, S., Radinović, M., & Bogdanović, V. (2013). Influence of microclimatic conditions on the daily production of dairy cows. Biotechnology in Animal Husbandry, 29(1), 45-53.
Ledgard, S. F., Wei, S., Wang, X. Q., Falconer, S., Zhang, N. N., Zhang, X. Y., & Ma, L. (2019). Nitrogen and carbon footprints of dairy farm systems in China and New Zealand, as influenced by productivity, feed sources and mitigations. Agricultural Water Management, 213, 155–163. DOI: 10.1016/j.agwat.2018.10.032
Leso, L., Barbari, M., Lopes, M. A., Damasceno, F. A., Galama, P., Taraba, J. L., & Kuipers, A. (2020). Invited review: Compost-bedded pack barns for dairy cows. Journal of Dairy Science, 103, 1072-1099. DOI: 10.3168/jds.2019-17191
Moretti, R., Biffani, S., Chessa, S., & Bozz, R. (2017). Heat stress effects on Holstein dairy cows’ rumination. Animal, 11, 2320-2325.
Muschner-Siemens, T., Hoffmann, G., Ammon, C., & Amon, T. (2020). Daily rumination time of lactating dairy cows under heat stress conditions. Journal of Thermal Biology, 88, 102484.
National Research Council U.S., Committee on Physiological Effects of Environmental Factors on Animals. (1971). A guide to environmental research on animals. Washington, National Academies Press.
Ngwabie, N. M., Jeppsson, K. H., Nummermark, S., Swensson, C., & Gustafsson, G. (2009). Multiplication measurement of greenhouse gases and emission rates of methane and ammonia from a naturally ventilated barn for dairy cows. Biosystems Engineering, 103(1), 68-77. DOI: 10.1016/j.biosystemseng.2009.01.007
Poteko, J., Zähner, M., & Schrade, S. (2019). Effects of housing system, floor type, and temperature on ammonia and methane emissions from dairy farming: A meta-analysis. Biosystems Engineering, 182, 16-28. DOI: 10.1016/j.biosystemseng.2019.03.006
Rotz, C. A. (2018). Modeling greenhouse gas emissions from dairy farms. Journal of Dairy Science, 101, 6675-6690. DOI: 10.3168/jds.2017-13272
Rotz, C. A., & Thoma, G. (2017). Assessing carbon footprints of dairy production systems. In D. K. Beede (Ed.), Large Dairy Herd Management (3rd ed., pp. 3-18). American Dairy Science Association.
Sambraus, H. H., Schön, H., & Haidn, B. (2002). Tiergerechte Haltung von Rindern. In W. Methling & J. Unshelm (Eds.), Umwelt- und tiergerechte Haltung von Nutz-, Heim- und Begleittieren (pp. 281-332). Berlin: Parey Bucherverlag.
Schmithausen, A. J., Schiefler, I., Trimborn, M., Gerlach, K., Südekum, K. H., Pries, M., & Büscher, W. (2018). Quantification of methane and ammonia emissions in a naturally ventilated barn by using defined criteria to calculate emission rates. Animals, 8(5), 75. DOI: 10.3390/ani8050075
Shi, R., Wang, Y., Van Middelaar, C., Ducro, B., Oosting, S., Hou, Y., Wang, Y., & Van der Linden, A. (2024). Balancing farm profit and greenhouse gas emissions along the dairy production chain through breeding indices.
Zimbelman, R.B., Rhoads, R., Rhoads, M., Duff, G., Baumgard, L., & Collier, R. (2009). A re-evaluation of the impact of Temperature Humidity Index (THI) and Black Globe Humidity Index (BGHI) on milk production in high producing dairy cows. Proceedings of the Southwest Nutrition & Management Conference, Tempe, AZ, USA, 158-169.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Neđo Stokanović, Denis Kučević, Marija Klopčič

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
