Impact of freezing and freeze-drying processes on changes in phytochemicals and antioxidant capacity of blackberry fruit

Authors

  • Žaklina Karaklajić-Stajić Fruit Research Institute Čačak, Čačak, Serbia
  • Svetlana M. Paunović Fruit Research Institute Čačak, Čačak, Serbia
  • Jelena Tomić Fruit Research Institute Čačak, Čačak, Serbia
  • Aleksandar Leposavić Fruit Research Institute Čačak, Čačak, Serbia
  • Boris Rilak Fruit Research Institute Čačak, Čačak, Serbia
  • Marijana Pešaković Fruit Research Institute Čačak, Čačak, Serbia

DOI:

https://doi.org/10.63356/agrores.2025.006

Keywords:

blackberry, freezing, lyophilization, sugars, acids, phenols

Abstract

Blackberry (Rubus subg. Rubus Watson) is highly valued for its nutritional properties, which may be linked to its high content of primary and secondary metabolites. This study evaluates the effect of freezing and freeze-drying processes on the phytochemical content and antioxidant capacity of the ʻČačanska Bestrna’ blackberry cultivar, comparing these changes with the quality of fresh blackberry fruit. Primary metabolites, including soluble solids content (SSC), total and reduced sugars (TS, RS), total sucrose (TS), and total acids (TA) content, were determined in freeze-dryed, frozen and fresh blackberry fruits. Among the secondary metabolites, the content of total phenolics (TPC), and total anthocyanins (TAC) was analyzed as phytochemicals responsible for the antioxidant capacity of the fruit, which was also determined using the DPPH method. The results showed that the applied preservation methods positively affected the examined fruit parameters. Freeze-dried blackberry fruits showed superior levels of SSC (90.63%), TS (52.25%), RS (45.83%), and TA (6.10%) compared to frozen and fresh fruits. TPC values did not demonstrate significant variations between the two preservation methods and fresh fruit. In this regard, further research should be focused on increasing the efficiency of preserving beneficial phytonutrients in final blackberry products that are essential for human health, thereby ensuring better quality and high nutritional value.

References

Aktas, T., Fujii, S., Kawano, Y., & Yamamoto, S. (2007). Effects of pretreatments of sliced vegetables with trehalose on drying and quality of dried products. Food and Bioproducts Processing, 85(3), 178-183. DOI: 10.1205/fbp07037

Bhatta, S., Stevanovic Janezic, T., & Ratti, C. (2020). Freeze-drying of plant-based foods. Foods, 9(1), 87. DOI: 10.3390/foods9010087

Brand-Williams, W, Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. Food Science and Technology, 28, 25-30. DOI: 10.1016/S0023-6438(95)80008-5

Clark, J. R., & Finn, C. E. (2011). Blackberry breeding and genetics. Fruit, Vegetable and Cereal Science and Biotechnology, 5, 27-43.

Cordenunsi, B. R., Nascimento, J. D., & Lajolo, F. M. (2003). Physico-chemical changes related to quality of five strawberry fruit cultivars during cool-storage. Food Chemistry, 83(2), 167-173. DOI: 10.1016/S0308-8146(03)00059-1

De Torres, C., Diaz-Maroto, M. C., Hermosin-Gutierrez., I., & Perez-Coello, M. S. (2010). Effect of freeze-drying and oven-drying on volatiles and phenolics composition of grape skin. Analytica Chimica Acta, 660, 177-182. DOI: 10.1016/j.aca.2009.10.005

Egan, H., Kirk, R., & Sawyer, R. (1981). The Luff Schoorl method. Sugars and Preserves. Pearson’s Chemical Analysis of Foods, 8, 152-153.

Enaru, B., Drețcanu, G., Pop, T. D., Stǎnilǎ, A., & Diaconeasa, Z. (2021). Anthocyanins: factors affecting their stability and degradation. Antioxidants, 10(12), 1967. DOI: 10.3390/antiox10121967

Kolniak-Ostek, J., Kucharska, A.Z., Sokόl-Letowska, A., & Fecka, I. (2015). Characterization of phenolic compounds of thorny and thornless. Journal of Agricultural and Food Chemistry, 63, 3012-3021. DOI: 10.1021/jf5039794

Liu, M., Li, X. Q., Weber, C., Lee, C. Y., Brown, J., & Liu, R. H. (2002). Antioxidant and antiproliferative activities of raspberries. Journal of Agricultural and Food Chemistry, 50, 2926-2930. DOI: 10.1021/jf0111209

Marjanovic, A., Djedjibegovic, J., Lugusic, A., Sober, M., & Saso, L. (2021). Multivariate analysis of polyphenolic content and in vitro antioxidant capacity of wild and cultivated berries from Bosnia and Herzegovina. Scientific Reports, 11(1), 1-10. DOI: 10.1038/s41598-021-98896-8

Marszałek, K., Woźniak, Ł., Kruszewski, B., & Skąpska, S. (2017). The effect of high pressure techniques on the stability of anthocyanins in fruit and vegetables. International Journal of Molecular Sciences, 18(2), 277. DOI: 10.3390/ijms18020277

Mensor, L. L., Menezes, F. S., Leitao, G. G., Reis, A. S., dos Santos, T. C., & Coube, C. S. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research, 15, 127-130. DOI: 10.1002/ptr.687

Mikulic-Petkovsek, M., Slatnar, A., Stampar, F., & Veberic, R. (2012). HPLC-MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chemistry, 135, 2138-2146. DOI: 10.1016/j.foodchem.2012.06.115

Milivojević, J. (2022). Posebno voćarstvo 3 - Jagodaste voćke. Poljoprivredni fakultet, Univerzitet u Beogradu.

Nikolić, M., & Milivojević. J. (2015). Jagodaste voćke - Tehnologija gajenja. Univerzitet u Beogradu, Poljoprivredni fakultet.

Ruiz-Aceituno, L., Hernandez-Hernandez, O., Kolida, S., Moreno, F. J., & Methven, L. (2018). Sweetness and sensory properties of commercial and novel oligosaccharides of prebiotic potential. LWT, 97, 476-482. DOI: 10.1016/j.lwt.2018.07.038

Sánchez‐Moreno, C., Larrauri, J. A., & Saura‐Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76, 270-276.

Shepherd, R. (2002). Resistance to changes in diet. Proceedings of the Nutrition Society, 61(2), 267-272.

Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178. DOI: 10.1016/S0076-6879(99)99017-1

Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16(10), 24673-24706. DOI: 10.3390/ijms161024673

Stanisavljević, M. (1999). New Small Fruit Cultivars From Čačak: 1. The new blackberry (Rubus sp.) cultivar ‘Čačanska Bestrna’. Acta Horticulturae, 505, 291-296. DOI: 10.17660/ActaHortic.1999.505.37

Strik, B. C., Clark, J. R., Finn, C. E., & Banados, M. P. (2014). Blackberry cultivation in the world. Revista Brasileira, 6, 46-57. DOI: 10.1590/0100-2945-445/13

Torre, L. C., & Barritt, B. H. (1977). Quantitative evaluation of Rubus fruit anthocyanin pigments. Journal of Food Science and Technology, 42, 488-490. DOI: 10.1111/j.1365-2621.1977.tb01528.x

Veberic, R., Stampar, F., Schmitzer, V., Cunja, V., Zupan, A., Koron, D., & Mikulic-Petkovsek M. (2014). Changes in the contents of anthocyanins and other compounds in blackberry fruits due to freezing and long-term frozen storage. Journal of Agricultural and Food Chemistry, 62, 6926-6935. DOI: 10.1021/jf405143w

Wojdylo, A., Figiel, A., & Oszmianski, J. (2009). Effect of drying methods with the application of vacuum-microwave on the phenolic compounds, color and antioxidant activity in strawberry fruits. Journal of Agricultural and Food Chemistry, 57, 1337-1343. DOI: 10.1021/jf802507j

Wu, R. Y., Frei, B., Kennedy, J. A., & Zhao, Y. Y. (2010). Effects of refrigerated storage and processing technologies on the bioactive compounds and antioxidant capacities of ‘Marion’ and ‘Evergreen’ blackberries. Journal of Food Science and Technology, 43, 1253-1264. DOI: 10.1016/j.lwt.2010.04.002

Downloads

Published

2025-05-23

Issue

Section

Articles